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A Protocol for Studying Transcription Factor Dynamics
Using Fast Single-Particle Tracking and Spot-On
Model-Based Analysis
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Abstract

Single-particle tracking (SPT) makes it possible to directly observe single protein diffusion dynamics in
living cells over time. Thus, SPT has emerged as a powerful method to quantify the dynamics of nuclear
proteins such as transcription factors (TFs). Here, we provide a protocol for conducting and analyzing SPT
experiments with a focus on fast tracking (“fastSPT”) of TFs in mammalian cells. First, we explore how to
engineer and prepare cells for SPT experiments. Next, we examine how to optimize SPT experiments by
imaging at low densities to minimize tracking errors and by using stroboscopic excitation to minimize
motion-blur. Next, we discuss how to convert raw SPT data into single-particle trajectories. Finally, we
illustrate how to analyze these trajectories using the kinetic modeling package Spot-On. We discuss how to
use Spot-On to fit histograms of displacements and extract useful information such as the fraction of TFs
that are bound and freely diffusing, and their associated diffusion coefficients.

Key words Single-particle tracking, Transcription factors, Live-cell imaging, Fluorescence micros-
copy, spaSPT, Spot-On, Diffusion, Single-particle trajectories, Single-molecule, Diffusion coefficient

1 Introduction

DNA-binding proteins such as transcription factors (TFs) play key
roles in essentially all nuclear processes including gene regulation,
DNA repair, and replication. TFs diffuse throughout the nucleus as
they search for and bind their cognate DNA binding sites and
recruit cofactors, chromatin remodelers, and general transcrip-
tional machinery before dynamically dissociating from chromatin
to begin a new cycle [1] (Fig. 1). Much of our current understand-
ing of TFs has come from structural, biochemical, and genomics
approaches. For example, structural methods such as cryo-EM have
revealed how DNA-binding domains interact with DNA at atomic
resolution, biochemical reconstitution approaches have revealed
hierarchical and sequential binding of the general transcription
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factors, and genomic studies such as ChIP-Seq have shown where
in the genome TFs bind [2]. However, many aspects of the
dynamic TF life cycle inside living cells such as diffusion, target
search mechanisms, DNA residence times, and clustering cannot be
captured with these static, single snapshot approaches. Since under-
standing TF dynamics is essential for understanding TF regulation
and function, live-cell imaging has thus emerged as a powerful tool
to overcome these limitations and to track the real-time kinetics of a
TF’s dynamic life cycle.

Early work using live-cell imaging methods such as fluores-
cence recovery after photobleaching (FRAP) and fluorescence cor-
relation spectroscopy (FCS) revealed DNA-binding of nuclear
proteins to be highly dynamic [3–5]. In FRAP, a region of interest
is photobleached and the rate of fluorescence recovery to the region
of interest is subsequently observed. By monitoring how quickly
bleached proteins exit the photobleached region and are replaced
by unbleached proteins, dynamic protein parameters like diffusion
coefficients and residence times can be estimated [6]. For example,
a stably DNA-bound protein would be replaced at a slower rate and
thus exhibit a slow FRAP recovery. FCS, on the other hand, mea-
sures the change in fluorescence in a small volume of interest. By
analyzing the temporal correlation in fluorescence fluctuations and
fitting kinetic models, one may infer diffusion coefficients, TF
concentration, DNA binding and other parameters [7]. However,
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Fig. 1 Outline of the dynamic life cycle of TFs. TFs undergo a dynamic life cycle inside the nucleus and can
exist in multiple states. They diffuse, search for and bind to cognate DNA-binding sites, recruit cofactors and
the general transcriptional machinery, and dissociate in search for the next DNA-binding site
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because both FRAP and FCS probes bulk TF diffusion, target
search, DNA binding, and DNA unbinding for many of TF mole-
cules simultaneously, analysis of FRAP and FCS data requires com-
plex reaction–diffusion modeling. Previous work and
benchmarking approaches have demonstrated that conceptually
distinct FRAP and FCS models sometimes fit experimental data
equally well, which can make it challenging to quantitatively inter-
pret FRAP and FCS data [5, 6, 8, 9].

Single-particle tracking (SPT) overcomes these limitations by
enabling direct observation of individual fluorescently labelled pro-
teins in single cells in real time [10]. In SPT, TFs are localized in
each frame and then connected across frames to form trajectories.
Through analysis of these SPT trajectories, we can then separate
proteins into subpopulations based on their distinct diffusive beha-
viors, thus illuminating each aspect of the TF life cycle (Fig. 1)
[1]. For example, since chromatin is a slow-moving scaffold, DNA
binding of TFs can be observed as a change in the diffusion coeffi-
cient from a freely diffusing state (D ~ 1–10 μm2/s for most TFs) to
a slow-moving bound state (D ~ 0.001–0.05 μm2/s). Further-
more, by following the DNA-bound TFs over time, the residence
time can be estimated [8, 11–13]. Once the bound fraction and
residence time have been determined, the TF search time, how long
a TF searches on average for a cognate site, can be calculated
[14]. Moreover, anomalous diffusion and TF clustering can be
inferred [15]. As such, SPT makes it possible to directly observe
and quantify each aspect of the TF life cycle in living cells.

Recent applications of SPT have revealed how anomalous dif-
fusion and transient trapping by protein clusters accelerate the TF
target search mechanism [16] and suggested that longer TF resi-
dence times result in higher transcriptional output [17, 18]. Other
SPT applications have focused on specific protein(s) such as the
preinitiation complex assembly [19], TALEN and Cas9 nucleases
[20], and the Polycomb proteins [21, 22]. Other SPT studies have
quantified TF binding in in mitosis [23, 24] and how
low-complexity domains affect TF dynamics [25]. Finally, SPT
approaches have now matured to the point where single TF track-
ing inside living Drosophila and mouse embryos is possible [26].

At a high level, SPT methods applied to TFs and related pro-
teins fall into at least three classes: “fastSPT,” “slowSPT,” and “all-
in-one SPT.” “fastSPT” approaches such as single particle tracking
photoactivated localization microscopy (sptPALM) [27] and stro-
boscopic photoactivation SPT (spaSPT) [28] utilize imaging at
high frame rates (~50–250 Hz) to track both bound and fast-
diffusing TFs. Analysis of “fastSPT” data can reveal diffusion
mechanisms, bound fractions, the number of diffusive states and
more, but photobleaching rates are generally too high to infer
residence times. Second, “slowSPT” uses long-exposure times to
blur out fast-diffusing proteins and selectively focuses on slow-
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diffusing, presumably chromatin-bound TFs [11, 29, 30]. Thus,
slowSPT makes it possible to measure the residence time of the
DNA-bound subpopulation, but cannot report on fast-diffusing
subpopulations. “All-in-one SPT” approaches combine short expo-
sures with variable dark times to attempt to simultaneously quantify
the entire TF life-cycle including diffusion, number of states, and
residence time [8, 12, 30, 31].

Here, we focus on “fastSPT,” specifically spaSPT experiments.
We will discuss how to optimize experimental and acquisition
parameters, and how to analyze the resulting SPT data using
Spot-On, a kinetic modeling framework that makes it possible to
extract diffusion coefficients, the number of diffusive states, and the
bound fraction from single-particle trajectories acquired from SPT
experiments [28]. SPT experiments have four key steps: (1) cell
preparation, (2) imaging, (3) trajectory generation, and (4) trajec-
tory analysis (Fig. 2).

The first step of an SPT experiment is cell preparation. To be
able to track single proteins, we must achieve sparse and bright
fluorescent labeling. Typically, a TF is tagged as a genetically
encoded fusion protein. Here, endogenous tagging using
genome-editing is preferable, since it can avoid artifacts often asso-
ciated with transient overexpression [14, 32]. Traditional fluores-
cent proteins such as GFP are not well-suited for SPT since SPT
requires sparsity. Instead, photoswitchable proteins such as mEos
and Dendra or self-labeling tags such as SNAP-Tag or HaloTag are
preferred [27, 31]. HaloTag combined with bright organic dyes is
the most popular approach since it combines superior photostabil-
ity and brightness with high specificity and control over labeling
density. Controlling labeling density is essential; if too few in-focus
proteins are labeled, we obtain no trajectories, but if too many are
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Fig. 2 Overview of the key steps involved in conducting a “fastSPT” experiment and analyzing the data using
Spot-On. A fastSPT experiments has four main steps. (1) Cell preparation: cells expressing a tagged protein of
interest are labeled with a synthetic dye; (2) Imaging: fluorescence microscopy is then used to observe the
movement of single labeled proteins (this figure was adapted from Video 2 from ref. 28 with permission).
(3) Trajectory generation: particles are localized in each frame of the movies and tracked across frames to
obtain SPT trajectories; (4) Trajectory analysis: SPT trajectories are analyzed using Spot-On to extract
information about the diffusion coefficients and the bound and free subpopulations (shown: simulated SPT
data with 50% bound and 50% free with DFREE ¼ 4 μm2/s at 100 Hz)
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labeled, their paths will cross which leads to tracking errors (Fig. 3).
Utilizing the HaloTag together with cell-permeable dyes such as
Janelia Fluor (JF) dyes make it possible to control labeling density
in two ways (Fig. 4) [33–35]. First, if “regular” JF dyes are used
such as JF549 or JF646 [34], one can obtain a desired labeling
density by titrating labeling time (typically 15–30 min) and dye
concentration (typically ~1 pM to 5 nM depending on TF expres-
sion level). Second, one can control density using photoactivatable
JF dyes, such as PA-JF549 and PA-JF646 [35] which only become
fluorescent upon photoactivation using 405 nm illumination. With
these dyes, one typically uses a higher labeling density (typically
~5 nM to 100 nM depending on TF expression level) to label many
TFs and photoactivates a small fraction. The use of PA-dyes is
recommended since it makes it possible to track TFs at very low
densities such that tracking errors are minimized (Fig. 3) and
facilitates simultaneous acquisition of thousands of trajectories by
continuously photoactivating new subsets of TFs to compensate for
photobleaching [27, 28]. With “regular” JF dyes one generally
faces a hard trade-off between low density (few trajectories, few
tracking errors) and high density (many trajectories, many tracking
errors). However, PA-JF dyes are less cell-permeable, less
chemically stable, and more prone to labeling artifacts especially

High density of labeled particles: frequent tracking errors 

Low density of labeled particles: few tracking errors

τ = 1 τ = 2 τ = 3

incorrect trajectories

correct trajectories

particle 

particle from past frame 

τ = 4

Fig. 3 High particle densities result in frequent tracking errors (misconnections). Top panel: at low particle
densities, particle trajectories can be clearly distinguished resulting in few misconnections. Bottom panel: at
high particle densities, particle trajectories frequently overlap resulting in tracking errors (misconnections
shown in red) when localizations are connected across frames during the tracking step
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for low-to-moderately expressed proteins (unpublished
observations). Thus, careful labeling control experiments should
be performed if using PA-JF dyes.

Once cells expressing a tagged TF have been mounted on the
microscope, we can proceed to the second step, imaging. In gen-
eral, successful SPT acquisition requires a microscope with a high
numerical aperture (NA) objective, a sensitive camera, and suffi-
ciently powerful excitation lasers [9]. Most SPT studies use Highly
Inclined and Laminated Optical Sheet (HILO) illumination since it
conveniently reduces out-of-focus background fluorescence,
thereby increasing the signal-to-noise ratio [36]. However, other
modalities are also suitable for SPT, and a full discussion of suitable
microscope modalities is beyond our scope. Here, we will focus
specifically on how to optimize stroboscopic photoactivation SPT
(spaSPT) imaging acquisition, though several considerations apply
to SPT in general.

First, since chromatin-bound TFs are largely immobile, they
produce a diffraction limited emission spot as expected from a point
source, which can be precisely localized [37]. In contrast, detecting
and localizing fast-diffusing TFs is challenging because as a frame is
acquired, fast-diffusing TFs move and spread their emission
photons across many pixels resulting in an imaging artifact known
asmotion blur (Fig. 5; [28, 38, 39]). For example, for a typical pixel
size of 100 nm andTFD¼ 3 μm2/s, 53% of TFswouldmove at least
3 pixels during a Δτ ¼ 10 ms acquisition time (100 Hz) assuming
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Fig. 4 Overview and comparison of fastSPT with “regular” dye and spaSPT. Left: overview of “regular”
fastSPT. Here, the protein of interest is labeled with a regular dye that is continuously fluorescent (e.g., JF549
or JF646) and excited with constant illumination from the excitation laser. Right: overview of stroboscopic
photoactivation SPT (spaSPT). Here, the protein of interest is labeled with a photoactivatable (PA) dye that
exists in a dark state, but which can be stochastically photoactivated into a fluorescent state using 405 nm
illumination. This allows careful control of the density of fluorescent particles, and photoactivation of new
proteins as existing ones photobleach which make it possible to obtain large numbers of trajectories, yet at
low density. Stroboscopic pulsing of the excitation laser is used to minimize motion-blurring of fast-diffusing
proteins and pulsing of the photoactivation laser during the camera read time is used to minimize background
fluorescence
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Brownian motion (P r > rMAXð Þ ¼ 1� exp �r2MAX=4DΔt
� �

).
Since most localization algorithms assume diffraction limited emis-
sions from an immobile point source [40], such motion blur can
lead to both undercounting of the fast-diffusing subpopulation and
imprecise localization [28, 41]. Stroboscopic excitation, whereby
the excitation laser is pulsed, makes it possible to reduce motion
blurring (Fig. 4). For example, using either a 2ms or 1ms excitation
pulse, would reduce the fraction of TFs that move at least 3 pixels to
2.35% or 0.06%, respectively (100 nm pixels, D ¼ 3 μm2/s). Thus,
stroboscopic excitation makes it possible to minimize motion blur-
ring, though it requires sufficiently powerful excitation lasers to
generate enough signal during the short exposure.

Second, photoactivation (405 nm) and excitation laser (e.g.,
561 or 633 nm) powers should be optimized in spaSPT [28]. To
minimize photobleaching, the excitation laser power should be set
to the lowest power that gives sufficient signal-to-noise to reliably
and precisely localize particles. To minimize tracking errors, but
still obtain sufficient trajectories, a mean number of ~1–2 in-focus
fluorescent particles per nucleus per frame is typically optimal. To
achieve this, the 405 nm photoactivation laser power can be tuned:
too high power will lead to too many activated fluorescent particles
resulting in tracking errors; too low power, and there will be too
few particles to track. If continuous photoactivation at low power is

Fig. 5 Illustration of motion-blurring of fast-diffusing particles. To illustrate the
concept of motion-blurring, we simulated 2D Brownian motion with a timestep of
1 μs for a bound or slow-diffusing TF (Left: D ¼ 0.01 μm2/s) and for a fast-
diffusing TF (Right: 10 μm2/s) with a 10 ms exposure time with a pixel size of
110 nm. We used an Airy disc, following the Fraunhofer diffraction pattern for a
circular aperture, as the point spread function and added realistic Poissonian
photon shot noise, read noise, and dark current noise. Whereas bound and slow-
diffusing particles are easily detected, detection and precise localization of
motion-blurred fast-diffusing particles is extremely challenging which leads
to bias
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used it will contribute background fluorescence. Pulsing the
405 nm photoactivation laser during the brief camera read time
between frames conveniently avoids this (Fig. 4).

Third, we must optimize the frame rate. If the frame rate is too
fast, TF displacements between frames will be difficult to distin-
guish from the localization uncertainty. If the frame rate is too slow,
fast diffusing particles will defocalize (move out of the axial detec-
tion range of �~350 nm) before we can track them. The average
displacement, assuming 2D Brownian motion, between frames is
given by

ffiffiffiffiffiffiffiffiffi
4Dτ

p
. For a typical TF withD ~ 3 μm2/s, this translates to

~350 nm displacement for a frame rate of 100 Hz and ~250 nm
displacements for a frame rate of 200 Hz which is substantially
greater than typical 1D localization uncertainties of ~20–40 nm.
Thus, for most TFs, frame rates of 100–200 Hz are optimal.

Once the movies have been acquired using optimized acquisi-
tion parameters we can proceed to the third step, trajectory gener-
ation [42]. Here we provide a brief discussion of trajectory
generation; for an in-depth discussion please refer to [40, 42]. Tra-
jectory generation consists of two steps: (1) localizing particles in
each frame and (2) connecting the localized particles from frame to
frame to form trajectories. First, sufficient signal-to-noise and low
motion-blur is required for particle detection and precise particle
localization [37, 42]. Localization involves first filtering and
thresholding images to identify particles, followed by precise
sub-pixel localization of the XY-coordinates. Most algorithms use
point spread function (PSF) fitting to achieve this localization,
though weighted centroid estimation is more robust to high
motion-blurring [41]. Second, once the particles have been loca-
lized in each frame, they are connected across frames in the tracking
step to generate trajectories (XY coordinates for each timepoint).
Tracking algorithms vary from relatively simple like the nearest-
neighbor and the Hungarian algorithms [43] to more complex
such as the Multiple-Target Tracing [44] and u-track [45]. Some
of these algorithms are conveniently available through ImageJ plu-
gins such as TrackMate and the MOSAICsuite [43, 46]. Notably, if
the SPT data is of high quality and the particle density is low
(~<1–2 particles per frame), the choice of tracking algorithm
plays a relatively minor role. For a tracking algorithm comparison,
please see [40].

After single-particle trajectories have been generated, we can
proceed to the fourth step, trajectory analysis. Here we focus on
fastSPT analysis. One approach which we refer to as MSDi uses
mean square displacement (MSD) analysis to estimate the diffusion
coefficient of each trajectory, plots a histogram of diffusion coeffi-
cients (Log(D)), and then extracts subpopulations by fitting prob-
ability distributions to this histogram. Other methods attempt to
estimate both the subpopulations and the transitions between them
using Hidden Markov Modeling and/or Bayesian approaches [47–
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50]. However, these methods do not account for defocalization
[51], which leads to an overestimation of the bound subpopula-
tion, and in benchmarking studies MSDi approaches perform quite
poorly [28]. These limitations can be overcome by pooling trajec-
tories, fitting displacement histograms as a function of time, and
then modeling defocalization as a function of the inferred diffusion
coefficient of each subpopulation (Fig. 6). This approach was ele-
gantly introduced by Mazza et al. in 2012 [8]. We subsequently
simplified, expanded, and benchmarked this approach as Spot-On
[14, 28]. Spot-On is available open-source in MATLAB and
Python, as well as a convenient “no coding required” drag-and-
drop web-interface, https://SpotOn.Berkeley.edu/.

The Spot-On web-interface is divided into three main sections
(1) uploading single-particle trajectories, (2) generating histograms
of displacements for multiple time points, and (3) fitting the dis-
placement histograms to a kinetic model in order to estimate
subpopulation sizes and their associated diffusion coefficients
(Fig. 6). First, single-particle trajectories are uploaded to Spot-On
and summary statistics are displayed (number of traces, their
length, number of frames, etc.). Once the trajectories have been
uploaded and assessed they can be used to generate a displacement
histogram for multiple timepoints. After the displacement histo-
gram has been generated, Spot-On proceeds to fit the histogram to
a kinetic model using Brownian motion under steady state condi-
tions without state transitions (i.e., it is assumed that transitions
between the bound and free states are negligible in each individual
trajectory). Spot-On offers fitting to two kinetic models: a
two-state or a three-state model (Fig. 7). The two-state model
considers a bound and free subpopulation and uses least-squares
fitting to estimate three parameters: the bound fraction (FBOUND),
the bound diffusion coefficient (DBOUND), and the free diffusion
coefficient (DFREE); the free subpopulation is given by 1� FBOUND

. The three-state model considers one bound and two free subpo-
pulations and uses least-squares fitting to estimate five parameters:
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Fig. 6 Steps involved in analyzing single-particle trajectories using Spot-On. Schematic of the Spot-On
web-interface workflow: (1) upload single-cell datasets of pooled trajectories and assess global SPT data
statistics; (2) generate histograms of displacements (jump lengths); (3) fit either a two-state or three-state
model to the data and assess the fit; (4) download the fitted parameters
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the bound fraction (FBOUND), the bound diffusion coefficient
(DBOUND), the slower free fraction (FSLOW), the slow free diffusion
coefficient (DSLOW), and the faster free diffusion coefficient (DFAST

); the faster free subpopulation is given by 1� FBOUND � FSLOW. A
key advantage of Spot-On is that it accounts for defocalization due
to 2D imaging of 3D motion [51], since axially diffusing particles
will gradually exit the focal plane (�~350 nm). The rate of defoca-
lization depends on the time interval between frames and the
diffusion coefficient, leading to under-counting of the free subpo-
pulations. Spot-On not only corrects for this bias, but the observed
rate of defocalization, Zcorr, is used as additional information to
estimate the free diffusion coefficients with higher confidence
[8, 14, 28] (Fig. 7). Spot-On can also optionally fit the 1D locali-
zation error, σ (standard deviation of localization uncertainty).
Finally, the user can download figures as well as the data and
inferred parameters from Spot-On directly (Fig. 6).

We end by briefly discussing 2- vs. 3-state model selection and
useful control SPT experiments. First, is a 2-state or 3-state model
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Fig. 7 Overview of two-state and three-state models implemented in Spot-On. Top: The two-state model
implemented in Spot-On models a chromatin-bound and free subpopulation while assuming Brownian motion.
Representative data, fits, and the underlying model are shown. Middle: The three-state model implemented in
Spot-On models a chromatin-bound and two free subpopulations corresponding to a slower and a faster free
state while assuming Brownian motion. Bottom: Definitions and defocalization correction implemented in
Spot-On. The datasets used to illustrate the models and fits were simulated using simSPT [28] with the
following parameters for the 3-state model: DBOUND ¼ 0.01 μm2/s; FBOUND ¼ 0.25; DSLOW ¼ 0.25 μm2/s;
FSLOW ¼ 0.50; DFAST ¼ 6.0 μm2/s; FFAST ¼ 0.25; σ ¼ 25 nm. To illustrate the 2-state model, the following
parameters were used: DBOUND ¼ 0.01 μm2/s; FBOUND ¼ 0.2; DFREE ¼ 3.0 μm2/s; FFREE ¼ 0.80; σ ¼ 25 nm
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better? Given the higher number of free parameters, a 3-state
model will always fit the data better. In particular, since diffusion
inside the nucleus is generally non-Brownian and anomalous unlike
the underlying Spot-On model, a slight mismatch between the data
and a model fit is expected. Therefore, a slight mismatch between
the data and 2-state model is not necessarily evidence for two freely
diffusive states. We therefore generally favor the 2-state model
unless the fit is quite poor or unless there are biological and
mechanistic reasons to support the two free diffusive states in the
three-state model. For example, components of the general tran-
scriptional machinery such as Cyclin T1 and TBP can freely diffuse
either as monomers or part of a larger multiprotein complex, thus
motivating and justifying two distinct diffusive states in the three-
state model [19, 52].

Finally, inclusion of controls is essential for validating SPT
approaches. At a minimum, we suggest a “free” and “bound”
control. An ideal “free” control is HaloTag fused to a nuclear
localization signal (Halo-NLS). Halo-NLS should exhibit a mini-
mal bound fraction (<15%) and exhibit a fast diffusion coefficient
(D ~ 8–12 μm2/s); a substantially higher bound fraction or slower
diffusion coefficient is a sign of too high motion blurring (note that
the positively charged NLS affords some DNA binding to Halo-
NLS [53]). Similarly, an ideal “bound” control is a stably bound
protein such as a histone. Histone H2B (H2B-Halo) is a popular
choice and should show a high bound fraction (>70%; some
unbound H2B is expected if overexpressed from a non-cell cycle
regulated promoter). Inclusion of Halo-NLS and H2B-Halo con-
trols thus makes it possible to validate the “dynamic range” of TF
behaviors that can be quantified. Furthermore, if a TF has a well-
defined DNA-Binding Domain (DBD), we also suggest a ΔDBD-
TF-Halo control.

In the following protocol, we discuss step-by-step how to
conduct and analyze SPT experiments using mouse embryonic
stem cells (mESCs) expressing an endogenous genetically encoded
TF-Halo fusion protein as an example. This protocol can be mod-
ified depending on the cell line, protein of interest, fluorescent
label, or microscope in use.

2 Materials

Below we described the required reagents and resources for the
four main steps of a fastSPT experiment (1) reagents for cell prepa-
ration, (2) equipment for microscopy, (3) code for trajectory gen-
eration, and (4) analysis using Spot-On.
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2.1 Reagents Needed

for Cell Preparation

Cell preparation reagents are highly cell-type specific. Here we use
reagents specific to mESCs that express a Halo-tagged TF as an
example. All of the following reagents must be prepared in a bio-
safety cabinet, practicing strict sterile technique.

1. Growth Media: In order to prepare your growth medium,
combine the following reagents: Knockout DMEM 1�, 15%
Fetal Bovine Serum, 2 mM GlutaMAX Supplement, 1 mM
MEM nonessential amino acids solution, 1000 U/mL LIF,
0.1 mM 2(β)-mercaptoethanol, 100 U/mL penicillin–strepto-
mycin. Store at 4 �C.

2. Matrigel: dilute according to manufacturer’s instructions prior
to cell plating. Store aliquots at �20 �C. After being diluted in
a serum-free medium, store at 4 �C (see Note 1).

3. Imaging dish: 35 mm dish, No. 1.5 Coverslip, 14 mm Glass
Diameter, uncoated (see Note 2).

4. Trypsin-EDTA (0.05%), phenol red. Store at �20 �C.

5. Sterile 1� Phosphate Buffered Saline pH 7.4.

6. Biosafety Cabinet with Laminar Flow.

7. Tissue Culture (TC) incubator set to 37 �C and 5.5% CO2.

8. Phenol-red free imaging Media: DMEM without phenol red,
15% fetal bovine serum, 2 mM GlutaMAX Supplement, 1 mM
MEM nonessential amino acids solution, 1000 U/mL LIF,
0.1 mM 2(β)-ME, 100 U/mL penicillin–streptomycin. Store
at 4 �C (see Note 3).

9. Dimethyl sulfoxide, sterile filtered.

10. Synthetic Dyes: Halo or SNAP dyes (e.g., PA-JF646 or
PA-JF549). We recommend storing dyes at 1000� the desired
concentration in DMSO at �20 �C in single-use aliquots to
minimize freeze–thaw cycles [34, 35] (see Note 4).

2.2 Microscope

Set-Up

Many microscope modalities are suitable for SPT, including wide-
field microscopes. Here we use as our example a custom-built
Nikon TI Microscope, implementing highly inclined illumination
[36] that we previously used [14]. Key components include the
following.

1. Live-cell incubation chamber heated to 37 �C that maintains a
humidified atmosphere at 5.5% CO2.

2. A high-NA objective. For HILO, we used a 100�/NA 1.49
Oil-immersion TIRF objective (Nikon apochromat CFI Apo
TIRF 100� Oil).

3. Powerful excitation lasers matched to the desired fluorophores.
We used 561 nm (1 W, Genesis, Coherent) for (PA)-JF549;
633 nm (1 W, Genesis, Coherent) for (PA)-JF646; 405 nm
(140 mW, OBIS, Coherent) for photoactivation.
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4. A fast and sensitive camera. Most EM-CCD and back-
illuminated high quantum efficiency sCMOS cameras are suit-
able. We used an iXonUltra 897 EM-CCD camera (Andor) (see
Note 5).

5. Emission filters that match the fluorophores. We used: JF549/
PA-JF549: Semrock 593/40 nm band-pass filter; JF646/PA-
JF646: Semrock 676/37 nm bandpass filter.

6. Control of laser intensity. Rapid control (<100 μs) of laser
intensity at multiple wavelengths is essential for stroboscopic
excitation. We achieved this using an AOTF (AA Opto-
Electronic, France, AOTFnC-VIS-TN) and DAQ card
(National Instruments, NI-DAQ PCI-6723).

7. Microscope control software. We used Nikon Elements.

2.3 Localization

and Tracking

Once raw SPT movies have been acquired, particles must be loca-
lized in each frame (localization) and then tracked between frames
to form trajectories (tracking). Popular and user-friendly algo-
rithms and implementations to achieve this include MTT [44],
u-track [45], TrackMate [43], and the MOSAICsuite [46]. We
used the MTT algorithm implemented in MATLAB (see Note 6).
For a performance comparison of tracking algorithms, please
see [40].

2.4 Analysis Using

Spot-On

To analyze trajectory data using Spot-On, use either the
web-interface, the MATLAB, or the Python version (see Note 7).

3 Methods

3.1 Cell Preparation The following steps should be carried out in a biosafety cabinet and
everything must be kept sterile. The steps apply to mESCs that
express an endogenous genetically encoded TF-Halo fusion protein
This protocol can be adjusted for the cell line, dye, or fluorophore
in use.

1. Grow cells for seeding on tissue culture dishes until they are at
70–80% confluency.

2. Coat the glass bottom 35 mm imaging dish with Matrigel—
Add 1 mL diluted Matrigel per imaging dish, spread and incu-
bate at 37 �C and 5.5% CO2 for 30–60 min (see Note 8).

3. Aspirate all of the media from the culture dish and wash cells
with PBS. Gently swirl the PBS to ensure all residual media has
been removed.

4. Aspirate PBS and add just enough 0.05% Trypsin-EDTA to
cover the bottom of the culture dish and place in TC incubator
for ~3 min.

5. Remove cells from the incubator and check if all the cells have
thoroughly dissociated using a light microscope.
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6. After cells have dissociated from culture dish, quench with
normal culture medium, resuspend cells, pipet up and down
with a P1000 pipette until all cell clumps have been broken up
into single cells (see Note 9).

7. Transfer the desired number of cells to a 15 mL Falcon tube
and centrifuge at 300 � g for 3 min. Enough cells should be
used so that plated cells are ~70% confluent after overnight
growth on the MatTek dish.

8. While cells are spinning down, remove Matrigel from step 1
and add cell medium to the 35 mm imaging dish.

9. Remove tube from centrifuge and aspirate supernatant, leaving
cell pellet.

10. Resuspend cell pellet in cell medium.

11. Add cells to the imaging dish at the appropriate density for the
cell line in use. After adding cells to the imaging dish, gently
swirl the dish to evenly distribute cells.

12. Place in TC incubator and grow overnight.

Day of imaging After seeding imaging dishes the day before and
verifying using a tissue culture microscope that they look healthy
and are at ~70% confluency, we can proceed to dye labeling and
imaging.

1. Prior to preparing cells for imaging, turn on the microscope
and environmental chamber leaving enough time for the cham-
ber to equilibrate to 37 �C and 5.5% CO2 before imaging.

2. Prepare three 15 mL Falcons tubes: one with PBS; one with
regular medium; and one with phenol red free Imaging
Medium. Place these in the 37 �C water bath.

3. Remove the falcon with regular medium from the 37 �C water
bath and make a dilution of the synthetic dye (e.g., Halo or
SNAP compatible JF dye) to the desired concentration. Pipet
up and down to mix (see Note 10).

4. Remove medium from the imaging dish and add medium with
the desired concentration of synthetic dye and place in TC
incubator for 15 min.

5. Wash 1: Remove Halo-dye medium and add prewarmed PBS,
remove PBS, and add prewarmed medium and place in incuba-
tor for 5 min.

6. Wash 2: remove medium and add prewarmed PBS, remove
PBS, and add prewarmed imaging medium without phenol
red (more/longer washes may be necessary for PA-JF dyes)
(see Note 11).

7. Cells are now ready to be imaged and can be stored in the TC
incubator until the microscope is ready.
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3.2 Imaging The specific imaging protocol will be highly dependent on the
microscope used, the desired SPT experiment, and a number of
other factors. We briefly comment on some of the main steps below
for fastSPT experiments.

1. Add immersion oil to the objective, then load the imaging dish
with labeled cells on the prewarmed microscope.

2. Move the objective up until cells are in focus using either
bright-field or fluorescence to focus on the cells.

3. If using HILO illumination, move stage to center the cell to be
studied in the field-of-view. Modulate the TIRF angle until
optimal HILO illumination is achieved (maximal signal-to-
background ratio and even illumination of the whole nucleus).

4. If optimizing laser acquisition settings, then record a short
movie (~500 frames) at the desired frame rate (typically
~100–200 Hz) changing only one parameter at a time. If
using photoactivation, adjust 405 nm intensity and/or pulse
duration until the desired density of particles is achieved (typi-
cally ~1–2 in-focus particles per nucleus per frame). If optimiz-
ing the main excitation laser (e.g., 561 nm for JF549), record
multiple short movies for different excitation powers and stro-
boscopic pulse durations, analyze the movies by generating
trajectories, and overlay trajectories on raw movies. Choose
an excitation setting that gives sufficient signal-to-noise that
the localization algorithm misses almost no particles visible by
eye in the raw images. Spending significant time iteratively
optimizing acquisition settings is usually well worth the effort.

5. Once acquisition settings have been optimized, record fastSPT
movies one cell at a time. After centering the field-of-view
around a cell and optimizing the HILO angle (the optimal
angle may need to be adjusted for each cell), crop a just big
enough ROI around the nucleus of interest. Photobleach par-
ticles if necessary if the initial density is too high. Then record a
fastSPT movie. Our default spaSPT acquisition parameters for
most mammalian TFs are: 30,000 frames at 134Hz, using 1ms
stroboscopic excitation (561 or 633 nm, 1 W, 100% AOTF
power), and pulsing the photoactivation laser (405 nm,
140 mW, typically 1–4% AOTF) during the ~0.45 ms camera
read-out time between frames.

6. Move at least two full field-of-views away and begin the next
movie. We typically collect 6–8 movies per cell line per condi-
tion per day for at least three biological replicates performed on
different days (at least 18–24 cells in total). Recording multiple
cells is necessary to average over cell-to-cell and biological
variation (e.g., cell cycle phase if cells are unsynchronized)
and to obtain robust results.
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7. Once finished with one cell line or condition, clean objective
and mount a new imaging dish with a different cell line or
condition.

8. Leave it at least 15 min to thermally equilibrate.

9. Then begin the next round of movies.

10. After imaging is complete, transfer all the raw SPT data, clean
the objective, and turn off the microscope.

3.3 Trajectory

Generation

Please see Subheading 2.3 for recommended localization and track-
ing algorithms. Below, we briefly outline the recommended steps
after a day of SPT data acquisition.

1. Make sure to visually inspect SPT movies and visually assess the
quality and reliability of the localization and tracking for a few
movies by overlaying trajectories on the raw SPT movies.

2. Optimize localization and tracking algorithm parameters if
necessary, but make sure to use consistent parameters for all
conditions and replicates.

3. Once localization and tracking settings have been finalized,
batch process all of the acquired SPT movies if possible.

3.4 Trajectory

Analysis with Spot-On

Once trajectories have been generated, we can proceed to analysis.
Here we specifically focus on how to analyze fastSPT data with
Spot-On’s web-interface. Please refer to the Spot-On paper [28]
and the documentation available at https://SpotOn.berkeley.edu/
SPTGUI/docs/latest for a more complete discussion.

1. Go to https://SpotOn.berkeley.edu/ and click “Start
spotting!”

2. In “1. Select format” pick the format used for your SPT
trajectories (see Note 12) and drag and drop your data into
“3. Select datasets”.

3. Make sure through “Uploaded datasets” that the files were
successfully uploaded and assess “Global statistics” on the bot-
tom right, which will display metadata for your uploaded SPT
data (see Note 13).

4. Proceed to the “Kinetic Modeling” tab.

5. Under “Dataset selection” include all the datasets you would
like to analyze. Click “all” if all the data are from the same
condition.

6. Scroll down to “Jump length histograms” and inspect the
histograms of displacements. Under “Display dataset” click
through each cell to inspect that the data looks reasonable.
Click “Show pooled jump length distribution” if you would
like to combine the data from each single cell. Some noise is
expected, but if the histograms are too sparse, the fitting is less
likely to be accurate.
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7. Scroll back up to “Parameters” and “Jump length distribution”
and choose the desired values for “Bin width,” “Number of
timepoints,” “Jumps to consider,” “Use entire trajectories,”
and “Max jump” (see Note 14 for a brief discussion of how to
choose these parameters).

8. Next, proceed to “Model fitting.” Choose between the
two-state and three-state models, upper and lower bounds on
the diffusion coefficients, whether to infer “Localization error”
from the data (choose “fit from the data” or to predefine it
(default is 35 nm or 0.035 μm)). Choose whether to use the Z-
correction and if so, specify its value (default is 700 nm or
0.7 μm, which is reasonable for most high NA objectives).
Finally, choose whether to use PDF or CDF fitting, whether
to fit each single cell or only the merged displacement histo-
gram of all of the cells, and the number of fitting iterations (see
Note 15 for a brief discussion of how to choose these).

9. Click “Fit kinetic model.” This may take a few minutes.

10. If single-cell fitting was performed, scroll down to “display
dataset” under “Jump length histograms” and scroll through
each single cell and assess the quality of the fit and the cell-to-
cell variation. This way any potentially problematic datasets can
be identified (see Note 16). Once each single cell has been
assessed, click “show pooled jump length distribution” to see
the pooled data and fit.

11. Spot-On will display the fitted parameters for each single cell
(if single cell fitting was chosen) and the global fit parameters:
DBOUND, DFREE (DSLOW, DFAST, if 3-state model), FBOUND,
FFREE, (FSLOW, FFAST, if 3-state model), σ (if localization error
was fitted), and fitting parameter (I2, AIC, BIC; see Note 17).

12. Iterate through the various options until a desired fit has been
obtained.

13. Then scroll to the bottom of the page and click “Mark for
download” and enter a name and description.

14. Next scroll back to the top of the page and click the “Down-
load” tab. Here you can download individual figures (SVG,
PDF, PNG, EPS) or you can click “Download all (zip)” to
obtain a copy of the fitted parameters, raw data, as well as the
figures.

4 Notes

1. When preparing Matrigel make sure everything is done on ice.
Thaw individual aliquots on ice for 30 min prior to diluting in
serum-free medium. Coating of glass with 0.1% gelatin is also
appropriate, though in our experience adherence can be
poorer.
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2. A cover glass (e.g., Marienfeld-High-Precision 1.5H cover
glasses, 0117650) mounted in an Attofluor Cell chamber
(ThermoFisher, A7816) can also be used instead of MatTek
imaging dishes. For single molecule imaging wash the 25 mm
circular cover glasses in isopropanol, then plasma clean and
store the cover glasses in isopropanol at 4 �C until use. They
can be stored for >6 months at 4 �C.

3. It is essential to use medium without phenol red for fluores-
cence imaging to avoid excessive background fluorescence.

4. Janelia Fluor dyes can be inquired about at dyes.janelia.org or
purchased from Promega.

5. One can minimize localization uncertainty by choosing the
objective magnification and camera pixel size such that the
pixel size approximately matches the PSF standard
deviation [37].

6. OurMatlab version of the MTT algorithm can be accessed here
https://gitlab.com/tjian-darzacq-lab/SPT_LocAndTrack.

7. The web-interface can be found at https://spoton.berkeley.
edu/SPTGUI/; the Matlab version at https://gitlab.com/
tjian-darzacq-lab/spot-on-matlab; and the Python version at
https://gitlab.com/tjian-darzacq-lab/Spot-On-cli.

8. If extra Matrigel dishes are coated, they can be sealed with
Parafilm and stored in 4 �C for 2–4 days. It is recommended
to prepare imaging dishes with Matrigel fresh.

9. Pipet up and down ~10–15 times until cells are dissociated into
a single cell suspension. Check under a light microscope to
ensure that they are in a single-cell suspension. If mESCs are
passaged in clumps, they may differentiate.

10. Optimization of the dye concentration is typically required. For
optimizing SPT experiments, we recommend a dye titration
experiment using logarithmically spaced concentrations. Label-
ing will depend on protein concentration, cell type, incubation
time, and must thus be optimized for each cell line. For regular
Halo-JF dyes, we typically use between ~1 pM and ~5 nM label-
ing. For photoactivatable Halo-JF dyes, we typically use ~5 nM
to ~100 nM. For SPT, complete labeling is neither necessary nor
desired. But if complete labeling is desired, 500 nM JF-Halo dye
is typically sufficient as shown in [54].

11. When using “regular” JF-HaloTag dyes, two short 5-min
washes are generally sufficient. However, for PA-JF dyes,
more washes and/or longer than 5-min washes may be
required. The optimal washing protocol can be both dye
and cell-type specific. As a control, we recommend labeling
and washing a wild-type cell that does not express HaloTag
and making sure that negligible dye remains in this negative
control.
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12. Click on “learn more” to see the details of the format. If your
trajectory format is not identical to any of the supported for-
mat, it will be necessary to first write a script to convert it to
one of the Spot-On supported formats. Sample files for each
support format are available.

13. More data is always better, but we recommend having at least
6 single cells per condition and at least a few thousand trajec-
tories with at least 3 detections (see Fig. 3—figure supplement
12 in [28] for a quantification of how the robustness of the
Spot-On fit depends on the number of trajectories). It is also
worth paying close attention to “Particles per frame”—if this
number is too high, the SPT data is likely to contain frequent
tracking misconnections.

14. For a full discussion of how to choose these parameters, please
see Appendix 2 in [28] and the documentation available at
https://spoton.berkeley.edu/SPTGUI/docs/latest. Here, we
provide brief guidance:

Bin width: Bin width used to make displacement histo-
grams and used for PDF-fitting. Default is 10 nm and is
generally reasonable unless you have very sparse data. 1 nm is
the default setting for CDF-fitting, since CDF-fitting is more
robust and less prone to binning artifacts.

Number of timepoints: How many timepoints to consider
in the displacement histogram. If you allowN time points, this
corresponds to considering displacements with a maximal
time-delay of up to (N � 1)Δt. Generally, displacement histo-
grams become sparser at large time-delays and we generally do
not recommend considering time-delays much above
50–60 ms.

Max jump: the maximal displacements that will be consid-
ered in the analysis. This should be larger than the largest
displacements in the data. Generally, 3–5 μm is reasonable.

Jumps to Consider and “Use entire trajectories”: If use
entire trajectories is set to Yes, all displacement data will be
used. If it is set to No, only up to the indicated value of Jumps
to consider is used. For example, if Jumps to consider is set to
4 and 8 timepoints, for each trajectory, 4 displacements
(if possible) will be used to compute the displacement histo-
gram such that a trajectory of nine frames will contribute four
displacements to 1Δt, four displacements to 2Δt, . . ., and two
displacements to 7Δt. This is a semiempirical way of correcting
for additional biases toward bound molecules, and if there is no
bias toward bound molecules in the raw data, “Use entire
trajectories” should be set to Yes. This is a subtle choice and
please see Appendix 2 referenced above for a more complete
discussion.
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15. As noted above, please see Appendix 2 in [28] and the docu-
mentation available at https://spoton.berkeley.edu/SPTGUI/
docs/latest for a full discussion. It is described briefly below.

Kinetic model: this choice is discussed in the main text. We
recommend starting with the two-state model, and only con-
sidering the three-state model if the two-state fit is quite poor
and/or there are biochemical and mechanistic reasons to sus-
pect two distinct freely diffusive states.

Upper and lower bounds on fitted diffusion coefficients:
Defaults are [0.0005–0.08 μm2/s] for DBOUND and
[0.15–0.25 μm2/s] for DFREE. Please see Appendix 2 in [28]
for a full discussion, but briefly, it is important to pay attention
to these and make sure Spot-On does not infer a D at the min
or max. Also, DBOUND ¼ 0.08 μm2/s is almost certainly too
high for DNA binding and could indicate that the specified
localization error is too small and/or problems with micro-
scope stability. It is very useful to perform SPT on a histone
control to assess what DBOUND to expect from the bound
population.

Localization Error: this is the 1D standard deviation of the
localization uncertainty. If this can be estimated independently
and specified, it will improve the robustness of the fit. If it is
fitted from the data, please note that it is mainly fitted from the
bound subpopulation and that it is not well-fitted if the bound
subpopulation is negligible. If the localization error is incor-
rectly specified, typically the fit to the bound subpopulation
will be poor.

Z correction and dZ: since SPT generally involves 2D
imaging of 3D motion, we must correct for defocalization.
On most SPT microscopes, the axial detection range is
~700 nm—if particles move out of this range, they generally
cannot be detected. Using ~700 nm is generally safe, but please
see [28] for advice on how to experimentally measure it. In
some organisms such as some yeasts and bacteria, the cell is so
small, that the observation slice is comparable to the axial
detection range, in which case the Z correction should be set
to “No,” since there is no defocalization.

Model fit: You can either fit the PDF or CDF of the
displacement histogram. Generally, CDF-fitting is more robust
since it is less susceptible to binning noise, especially for mod-
erately sparse datasets. However, the two approaches give
equivalent results for sufficiently large SPT datasets, and com-
paring PDFs and fits is generally more intuitive.

Perform single cell fit: We generally recommend fitting
each single cell and assessing each single cell fit. This can be a
great way of identifying potentially problematic single cell
movies and for assessing cell-to-cell variation. The only down-
side is that it will take significantly longer for Spot-On to run.
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Iterations: Spot-On uses least-squares fitting, which is sub-
ject to trapping in local minima during optimization. For each
fit iteration Spot-On will generate a random initial guess for
each fitted parameter and proceed with optimization for a
hard-coded number of steps or until convergence. To avoid
trapping in local minima, multiple iterations of this are
repeated. For the 2-state model, three iterations are typically
more than enough to ensure that the global minima is identi-
fied. For 3-state model fitting, or if the fit looks poor, it may be
worth increasing the number of fit iterations. The only down-
side to increasing the number of iterations is a slower fit.

16. Problematic dataset refers to potential outliers in the overall
experimental dataset. For example, if an unhealthy cell or a
mitotic cell was accidentally chosen, or if the particle density
was too high, or is the acquisition settings were chosen poorly
(improper TIRF angle, etc.). Looking at each single cell as well
as the overall population can be a great way to assess cell-to-cell
variation and to assess the robustness of conclusions.

17. BIC and AIC are information criteria that can be used to
compare the “goodness of fit” for different models, while
penalizing models with more parameters. However, since
Spot-On models protein diffusion as Brownian, which it
never truly is in cells, we note that using BIC or AIC to
compare the goodness of fit of the 2-state and 3-state models
can be misleading.
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