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organization of basal ganglia is more 
complex than classically proposed. 
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Encoding four 
gene expression 
programs in the 
activation dynamics 
of a single 
transcription factor
Anders S. Hansen1,2,3,4 
and Erin K. O’Shea2,3,4,5,*

Cellular signaling response pathways 
often exhibit a bow-tie topology 
[1,2]: multiple upstream stress 
signals converge on a single shared 
transcription factor, which is thought 
to induce different downstream gene 
expression programs (Figure 1A). 
However, if several different signals 
activate the same transcription factor, 
can each signal then induce a specifi c 
gene expression response? A growing 
body of literature supports a temporal 
coding theory where information about 
environmental signals can be encoded, 
at least partially, in the temporal 
dynamics of the shared transcription 
factor [1,2]. For example, in the case 
of the budding yeast transcription 
factor Msn2, different stresses induce 
distinct Msn2 activation dynamics: 
Msn2 shows pulsatile nuclear 
activation with dose-dependent 
frequency under glucose limitation, 
but sustained nuclear activation with 
dose-dependent amplitude under 
oxidative stress [3]. These dynamic 
patterns can then lead to differential 
gene expression responses [3–5], but it 
is not known how much specifi city can 
be obtained. Thus, a major question 
of this temporal coding theory is 
how many gene response programs 
or cellular functions can be robustly 
encoded by dynamic control of a 
single transcription factor. Here we 
provide the fi rst direct evidence that, 
simply by regulating the activation 
dynamics of a single transcription 
factor, it is possible to preferentially 
induce four distinct gene expression 
programs. 

To understand how gene promoters 
respond to different patterns of 
dynamical transcription factor 
activation, we previously developed 
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a chemical genetic method that 
allows us to control the activity of 
Msn2 using a small molecule, 1-NM-
PP1 [3]. Combining this method 
with microfl uidics and time-lapse 
microscopy, we can therefore generate 
any dynamical pattern of Msn2 activity 
and simultaneously measure induction 
of Msn2 target genes using yellow 
fl uorescent protein (YFP) reporters 
[6]. Conceptually, two key promoter 
properties determine how a promoter 
decodes transcription factor dynamics. 
First, the amplitude threshold quantifi es 
how sensitive the promoter is to the 
nuclear concentration (amplitude) of the 
transcription factor. That is, promoters 
may require a minimal threshold 
concentration of Msn2 before they can 
activate gene expression. Second, 
the activation timescale quantifi es 
how quickly a promoter activates after 
Msn2 has entered the nucleus. For 
example, a slow promoter may be 
unable to respond to a suffi ciently brief 
Msn2 pulse. In principle, therefore, 
four distinct extreme promoter classes 
should exist: a Low threshold Fast 
class (LF), a Low threshold Slow class 
(LS), a High threshold Fast class (HF), 
and fi nally, a High threshold Slow class 
(HS) corresponding to the four corners 
in Figure 1B. This raises the question 
of whether it is possible to differentially 
induce each of the four promoter 
classes just by regulating the activation 
dynamics of a single transcription 
factor. 

To investigate this, we focused on 
four Msn2-specifi c gene promoters that 
represent each of the four promoter 
classes: HXK1 and SIP18 belong to 
the LF and HS classes, respectively; 
RTN2 is a borderline HF promoter [4]; 
and, fi nally, a recently identifi ed SIP18 
promoter mutant, mut D6, belongs to 
the LS class [5]. First, we considered 
HXK1. HXK1 is signifi cantly faster than 
the other promoters (Figure 1B). We 
therefore reasoned that it would be 
possible to preferentially induce HXK1 
using brief, low frequency Msn2 pulses 
too short to activate the other slower 
promoters. In agreement with our 
prediction, four well-separated 5-min 
Msn2 pulses strongly induced HXK1 
without signifi cantly activating the 
other promoters (Figure 1C). Second, 
mut D6 has the lowest amplitude 
threshold and is slow (Figure 1B). Thus, 
we gathered that a sustained 70-min 
274, April 4, 2016 ©2016 The Authors R269
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Figure 1. Preferential induction of any single one of four promoter classes by regulating Msn2 activation dynamics. 
(A) A bow-tie shaped signaling pathway. Many signaling pathways exhibit a bow-tie topology, where several different stresses and signals activate 
the same transcription factor. In an ideal bow-tie shaped pathway each signal input preferentially activates one gene output. It is believed that one 
way different signals can activate the same transcription factor, but nonetheless induce different genes, is by differentially regulating the activation 
dynamics of the transcription factor. (B) Promoter classifi cation. Based on the promoter amplitude threshold and activation timescale, four extreme 
promoter classes exist in principle. The parameters for each promoter were determined previously [4,5] and were calculated by simulating a previ-
ously described mathematical model [4]. (C–F) Encoding four gene expression programs in the dynamics of Msn2. Msn2-mCherry input is shown on 
the left and gene::YFP expression output is shown on the right for HXK1, mut D6, RTN2 and SIP18. For each gene we replaced the endogenous open 
reading frame with a YFP reporter gene. Measurements were made every 2.5 min for 64 timepoints in single yeast cells using time-lapse microscopy 
and microfl uidics [6]. YFP expression has been internally normalized by dividing by the average YFP expression in response to a 30 min, 40 min and 
50 min Msn2 pulse at 690 nM 1-NM-PP1 for each promoter (see also Figure S1 and Supplemental Information). Internal normalization was necessary 
to adjust for differences in inherent promoter strength (Figure S1). 1-NM-PP1 concentrations used were 690 nM (C), 100 nM (D) and 3 µM (E–F). Each 
condition is an average of at least around 500 single cells.
and very low amplitude Msn2 pulse 
would preferentially induce mut D6. As 
predicted, this Msn2 input is largely 
fi ltered out by the other promoters but 
strongly induces mut D6 (Figure 1D). 
Third, we studied RTN2, which is the 
least extreme promoter (Figure 1B). 
Although signifi cantly faster than mut 
D6 and SIP18, RTN2 is still signifi cantly 
slower than HXK1. As a result, we 
hypothesized that Msn2 pulses 
of intermediate duration (7.5 min) 
would be long enough to signifi cantly 
activate RTN2, but too short to 
signifi cantly activate mut D6 and 
SIP18. Furthermore, we hypothesized 
that pulses of maximal Msn2 amplitude 
would induce RTN2 more strongly 
than HXK1. Indeed, four 7.5-min Msn2 
pulses separated by 12.5-min intervals 
induced RTN2 to a two-fold higher 
extent than even HXK1 (Figure 1E). 
Fourth and fi nally, we considered 
SIP18. As an HS promoter, SIP18 
fi lters out both low amplitude and short 
duration Msn2 input. Accordingly, a 
sustained 70-min pulse of maximal 
Msn2 amplitude preferentially induced 
SIP18 (Figure 1F). 

We emphasize that each of the 
dynamic Msn2 inputs chosen 
resemble Msn2 dynamics under 
natural stress [3]. We note that only 
R270 Current Biology 26, R257–R274, April 
preferential differential expression is 
possible — each condition invariably 
induces the target gene as well as 
the other three to some extent (Figure 
1C–F). It is not possible to induce 
one and only one of the Msn2 target 
gene classes solely through control of 
Msn2 dynamics. We stress that each 
promoter response has been internally 
normalized (Figure S1 in Supplemental 
Information, published with this article 
online) — this is necessary because 
the absolute promoter strength differs 
between the promoters. Thus, our 
current data do not show differential 
expression at an absolute level. 
Nevertheless, with appropriate tuning 
of promoter strengths, preferential 
expression (Figure 1C–F) among the 
four promoter classes should also be 
possible at an absolute level [4]. Taken 
together, these results demonstrate 
that the cell can preferentially induce 
any one of the four Msn2 target gene 
groups by regulating the nuclear 
translocation dynamics of Msn2. 

In addition to Msn2, many yeast 
transcription factors such as Mig1/2 
and Crz1 also show stimulus-
dependent pulsatile activation [7]. 
In mammalian cells, the tumor 
suppressor transcription factor 
p53 also shows different activation 
4, 2016 ©2016 Elsevier Ltd All rights reserved
dynamics in response to different 
stresses [8]. Whereas sustained 
p53 activation is associated with 
terminal cell fates, p53 pulsing is 
associated with transient cell cycle 
arrest [9]. Similarly, cell fate in neural 
progenitor cells is under dynamic 
control of the transcription factor 
Ascl1/Mash1: sustained Ascl1 
activation induces differentiation 
into neurons, whereas Ascl1 pulsing 
leads to cell proliferation [10]. For 
both p53 and Ascl1 it is believed 
that different activation dynamics 
preferentially induce distinct gene 
expression programs, although it 
has not been possible to dissect this 
hypothesis at the promoter level. 
Here we experimentally demonstrate 
that by tuning promoter threshold 
and activation timescale, the cell can 
distinguish multiple dynamic patterns 
of a single transcription factor and 
preferentially induce any one of four 
distinct gene expression programs. 
Our results provide experimental 
support for a dynamic coding theory 
[1,2], wherein cells can transmit 
information about multiple distinct 
signals by regulating the dynamics 
of a single shared transcription 
factor. This may allow a cell with a 
limited set of pathways to respond 
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to a greater number of signals and 
stresses. 

SUPPLEMENTAL INFORMATION

Supplemental Information includes Experi-
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Ancestral sleep

Horacio O. de la Iglesia1, 
Claudia Moreno2,3, Arne Lowden3, 
Fernando Louzada4, 
Elaine Marqueze2,5, 
Rosa Levandovski6, Luisa K. Pilz7,12, 
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Eduardo Fernandez-Duque8, 
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and Till Roenneberg12,*

While we do not yet understand all 
the functions of sleep, its critical role 
for normal physiology and behaviour 
is evident. Its amount and temporal 
pattern depend on species and 
condition. Humans sleep about a 
third of the day with the longest, 
consolidated episode during the night. 
The change in lifestyle from hunter-
gatherers via agricultural communities 
to densely populated industrialized 
centres has certainly affected sleep, 
and a major concern in the medical 
community is the impact of insuffi cient 
sleep on health [1,2]. One of the causal 
mechanisms leading to insuffi cient 
sleep is altered exposure to the natural 
light–dark cycle. This includes the wide 
availability of electric light, attenuated 
exposure to daylight within buildings, 
and evening use of light-emitting 
devices, all of which decrease the 
strength of natural light–dark signals 
that entrain circadian systems [3].

While a change in sleep timing 
from pre-industrial to industrial, 
and from rural to urban lifestyles 
is generally accepted, the sleep 
research community has not reached 
consensus on whether sleep duration 
has changed as people moved from 
pre-industrial to industrial societies 
with indoor work in enclosed buildings 
and 24/7 access to electricity [3–5]. 
A recent study by Yetish et al. [6] 
recorded activity–rest patterns in 94 
individuals from three hunter-gatherer 
communities living without electricity 
(in Tanzania, Namibia and Bolivia; near 
to or within 20° south of the equator). 
While we commend them on carrying 
out this diffi cult study, we disagree 
with their interpretation that “…sleep 
in industrial societies has not been 
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reduced below a level that is normal 
for most of our species’ evolutionary 
history”, and that the recorded sleep 
patterns in their study “… are central to 
the physiology of humans living in the 
tropical latitudes…”.

In approaching the question of how 
human sleep may have evolved, pre-
electricity communities are of special 
interest, but are becoming increasingly 
harder to fi nd. The effort of Yetish et al. 
to identify and study such groups is 
therefore important. However, to use 
such diverse groups (spread over 
two continents) for the interpretation 
of sleep behaviour in the context of 
evolution, one needs comparisons 
to groups of similar ethnic and 
sociocultural background with access 
to artifi cial light in more industrialized 
environments. In two recently 
published studies [7,8] and one 
ongoing one [9], the rest–activity and 
light exposure patterns of genetically 
and culturally homogeneous 
communities that live both in their 
traditional settings as well as in more 
modern ones were investigated. The 
average sleep duration of the Toba/
Qom from Argentina [7], who still rely to 
some extent on hunting-gathering and 
live exposed to similar photoperiods 
and temperatures as the communities 
studied by Yetish et al. was longer 
(7.0–8.5 h) than in the latter report (5.7–
7.1 h), and was signifi cantly shortened 
by access to electricity (by up to one 
hour). Moreno et al. also showed that 
sleep (assessed by sleep diaries) is 
shorter with concomitant delayed 
melatonin onsets when Amazon rubber 
tappers have access to electricity [8]. 
These differences underline the large 
variability among populations and 
individuals (also evident from Figure 3 
in Yetish et al. [6]).

Evidence for changes in sleep 
duration in modern societies is mixed 
[4,5]. The Munich ChronoType study, 
which has accumulated about 250,000 
world-wide entries (using the Munich 
ChronoType Questionnaire, MCTQ), 
revealed that sleep on workdays 
shortened by 3.7 min/year over the 
past decade [2] while only that on 
work-free days remained the same. 
Overall, people sleep more than three 
hours less per week than ten years 
ago.

Yetish et al. reported that the 
standard deviation (SD) in sleep 
©2016 Elsevier Ltd All rights reserved R271
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