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The notion of state for a system is prevalent in the quantitative sciences and

refers to the minimal system summary sufficient to describe the time

evolution of the system in a self-consistent manner. This is a prerequisite for

a principled understanding of the inner workings of a system. Owing to the

complexity of intracellular processes, experimental techniques that can retrieve

a sufficient summary are beyond our reach. For the case of stochastic biomol-

ecular reaction networks, we show how to convert the partial state information

accessible by experimental techniques into a full system state using mathemat-

ical analysis together with a computational model. This is intimately related to

the notion of conditional Markov processes and we introduce the posterior

master equation and derive novel approximations to the corresponding infi-

nite-dimensional posterior moment dynamics. We exemplify this state

reconstruction approach using both in silico data and single-cell data from

two gene expression systems in Saccharomyces cerevisiae, where we reconstruct

the dynamic promoter and mRNA states from noisy protein abundance

measurements.
1. Introduction
Today’s experimental techniques of molecular biology give us some insight into

biological cells but provide a far from complete picture of the inner workings of

such cells or even of any of their subcomponents. With the advances in quantitat-

ive single-cell technologies, the generation of calibrated models of particular

cellular processes such as the expression of a gene becomes feasible [1–7]. A cali-

brated model can then be simulated forward to explore the a prior behaviours that

one can expect to observe experimentally. However, such forward simulations

are not useful if one asks which of those behaviours are compatible with the

actual measurement of a particular experiment. For instance, a stochastic gene

expression model can give rise to various mRNA and protein trajectories but a

model alone cannot be used to determine those mRNA dynamics that are compa-

tible with particular protein measurement trajectories. In general, the problem is to

reconstruct the dynamics of experimentally inaccessible states of a process that best

match the trajectories of the observable states of the process in a particular

experimental run. In other words, the observations allow us to filter the a priori
behaviours into compatible posterior behaviours. Mathematically, we condition

the inaccessible states onto those observations. Such conditioning or filtering has

a long tradition in mathematics and engineering [8,9]. The key is to obtain govern-

ing master equations, such as the Kushner and the Zakai equations [10,11], that

describe the time evolution of the conditional probability distribution. The best

known of such governing equations is the Kalman filter, which yields a finite para-

metrization of the posterior distribution by considering the case that states evolve

according to a linear stochastic differential equation and measurements are
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Gaussian distributed [12]. In most other cases (e.g. nonlinear

stochastic differential equation), no finite parametrization of

the posterior distribution can be found and a plethora of

approximations has been proposed in recent decades [13–15].

In comparison with the other approximation methods, such

as the popular extended Kalman filter, particle filters [16,17]

do not rely on any local linearization techniques while, as a

Monte Carlo method, they are computationally expensive and

do not scale well to high state dimensions.

In this work, we complement the chemical master

equation used to describe the a priori dynamics of a stochastic

reaction network with its posterior counterpart. It refactors

the seminal result of Wonham obtained for the case of con-

tinuous-time Markov processes [18]. The posterior master

equation and its exact posterior moment equation exhibit

the same scalability problems as their traditional a priori
counterparts and we present scalable approximations of the

posterior process. More specifically, the main contribution

of this work is a novel approximation approach obtained

by specific adaptations of moment closure techniques to the

posterior setting. In contrast with traditional optimal filter-

ing, where observations of the accessible states are assumed

to be available in continuous time [19], we mainly focus on

the practical scenario where observations are available only

at discrete time points.
2. Conditional Markov processes
We consider a well-mixed reaction system of d species and r
different reaction channels. The state X(t) comprising the inte-

ger abundance of the species at time t shows Markovian

dynamics where state transitions take place according to the

change vectors nj [ Zd of each reaction and where the reac-

tion’s propensity is given by the function ajðxÞ for

x [ X , Nd. With that, a reaction system with X(0) copies

of each species at time zero will have

XðtÞ ¼ Xð0Þ þ
Xr

j¼1

NjðtÞnj, NjðtÞ ¼ jj

ðt

0

aj(XðsÞ)ds
� �

,

copies at time t, where jjðtÞ are independent Poisson pro-

cesses of unit rate [20]. Starting with some initial

distribution PðXð0Þ ¼ xÞ, the distribution PðXðtÞ ¼ xÞ at

time t evolves according to the chemical master equation

[21]. Following our nomenclature, we refer to this equation

as the unconditional or prior master equation as it determines

the probability over species abundances if no further infor-

mation or measurements on the system are provided. The

traditional way in mathematics to formalize measurements

[19] is to assume some l-dimensional covariate process Y(t)

of X(t), for instance of the form

YðtÞ ¼
ðt

0

gðXðsÞÞ dsþ BWðtÞ, ð2:1Þ

where B is a full-rank matrix and W(t) is the standard

l-dimensional Brownian motion independent of X(t). For

example, for l ¼ 1 and gðxÞ ¼ xi one can think of a reaction

system where the i-th species is fluorescently labelled and

Y(t) corresponds to the integrated fluorescence intensity

measured at the microscope. Observation model (2.1) could

be appropriate in the context of fluorescence correlation

spectroscopy [22] where a photon count trace at the photo-

multipliers under high arrival rates admits a diffusion
approximation of the form (2.1). Having such observations

available one can ask for the probability over species abun-

dance in the presence of that information. That is, the

conditional probability PðXðtÞ ¼ x j yðsÞ, s [ ð0, t�Þ, where t

denotes the time up to which measurements are available.

Accordingly, one distinguishes between filtering and

smoothing for t ¼ t and t . 1, respectively. As conditioning

usually reduces variance, the measurements from a single

cell result in less uncertainty in the dynamic states of the reac-

tion system than with the traditional (prior) chemical master

equation. Interestingly, the process X(t) conditioned on such

covariate information is still Markovian [8]. Refactoring the

seminal work of Wonham for optimal filtering of continu-

ous-time Markov chains [18], the resulting conditional

chemical master equation for t ¼ 1 reads

dpðx, tÞ ¼
Xr

j¼1

[pðx� nj, tÞajðx� njÞ � pðx, tÞajðxÞ] dt

þ pðx, tÞ[gðxÞ � �gðtÞ]T ½BBT ��1½dyðtÞ � �gðtÞ dt�, ð2:2Þ

withpðx, tÞ;PðXðtÞ¼x j yðsÞ, s [ð0, t�Þ,pðx, 0Þ ¼ PðXð0Þ ¼ xÞ
and gðtÞ ; EðgðXðtÞÞÞ, where expectation is taken with

respect to pðx, tÞ. Owing to its dependency on that expec-

tation, (2.2) is cumbersome to solve and one often resorts to

an equation for the unnormalized version of pðx, tÞ, perform-

ing normalization after numerical integration (electronic

supplementary material, S.3). Equation (2.2) is a special

case of the general class of optimal filtering equations [19].

In most live-cell imaging applications observation at continu-

ous time are unrealistic due to experimental constraints such as

phototoxicity and bleaching. In practice one is faced with obser-

vations at discrete times y1 ¼ yðt1Þ, . . . ,yN ¼ yðtNÞ with

0 ¼ t0 , t1 , � � � , tN ¼ T usually admitting a conditional dis-

tribution of the form pðyn jXðsÞ, s [ ½0, tn�Þ ¼ pðyn jXðtnÞÞ.
Given the states at observation times, the observations are

assumed to be independent. The conditional probability

PðXðtÞ ¼ x j y1, . . . ,ynÞ with n ¼ maxðn [ N j tn � tÞ satisfies

the unconditional master equation

dpðx, tÞ
dt

¼
Xr

j¼1

[pðx� nj, tÞajðx� njÞ � pðx, tÞajðxÞ], ð2:3Þ

with pðx, 0Þ ¼ PðXð0Þ ¼ xÞ together with the reset conditions

pðx, tiÞ ¼ C�1
i pðx, t�i ÞpðyijxÞ, ð2:4Þ

at the observation times ti � tn, with the normalizing constant

Ci ¼
P

z[X pðz, t�i Þpðyi j zÞ. For the smoothing case, the con-

ditional probability PðXðtÞ ¼ x j y1, . . . , yNÞ for any t [ ½0, T�
denoted by ~pðx, tÞ admits the factorization through the Markov

property of the form

~pðx, tÞ ¼ bðx, tÞpðx, tÞ, ð2:5Þ

where bðx, tÞ ; Z�1
k pðyk, . . . , yN jXðtÞ ¼ xÞ with k ¼ min

ðk [ N j tk . tÞ and normalizer Zk ¼ pðyk, . . . yN j y1, . . . , yk�1Þ.
The probability of future observations given the current system

state bðx, tÞ satisfies the backward master equation

dbðx, tÞ
dt

¼
Xr

j¼1

½bðx, tÞ � bðxþ nj, tÞ�ajðxÞ, ð2:6Þ

with reset conditions

bðx, t�i Þ ¼ C�1
i bðx, tiÞpðyijxÞ, ð2:7Þ

and terminal conditions bðx, TÞ ¼ 1 for all x [ X . By solving the

http://rsif.royalsocietypublishing.org/
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Figure 1. Sample paths of the posterior birth – death process (T ¼ 50 s,
c1 ¼ 5 molecules s21, c2 ¼ 0.1 s21) with time-varying propensities (2.10).
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backward and the forward conditional master equation, one can

determine the smoothing probability ~pðx, tÞ through (2.5). Exam-

ining this factorization and the fact that bðx, TÞ ¼ 1, we conclude

that our knowledge of the underlying system state X(t) is less

uncertain when all measurements up to time T are incorporated

compared with the filtering case where measurements up to time

t are taken into account. Differentiating (2.5) yields an evolution

equation for ~pðx, tÞ directly

d~pðx, tÞ
dt

¼
Xr

j¼1

½~ajðx� nj, tÞ~pðx� nj, tÞ � ~ajðx, tÞ~pðx, tÞ�, ð2:8Þ

which we term the posterior or smoothing master equation

with ~pjðx, 0Þ ¼ PðXð0Þ ¼ 0Þ. It comprises novel time-varying

posterior or smoothing propensity functions of the form

~ajðx, tÞ ¼ ajðxÞ
bðxþ nj, tÞ
bðx, tÞ : ð2:9Þ

Hence, the prior propensities ajðxÞ are modulated by a

time-varying fraction that steers the process towards future

measurements. The expression for the posterior propensities pro-

vides the means to draw sample paths of the posterior

smoothing process through a stochastic simulation scheme

adapted to time-varying propensities [23,24].

As an illustrative example, we consider the smoothing

problem for a birth–death process ; ! X ! ; with respect-

ive rates c1, c2 and with a single noise-free observation

y1 ¼ Xðt1Þ ¼ 0 at t1 ¼ T and the deterministic initial con-

dition X(0) ¼ 0. This set-up corresponds to the classical

bridging problem or to the problem of endpoint conditioned

sampling of Markov chains [25] and can be solved explicitly

for this case. We aim to compute the smoothing distribution

~pðx, tÞ ¼ PðXðtÞ ¼ x jXð0Þ ¼ XðTÞ ¼ 0Þ, 8 t [ ½0, T�. The prior

distribution PðXðtÞ jXð0Þ ¼ 0Þ coincides with the filtering

distribution within t [ ½0, TÞ and admits a representation

in terms of a Poisson distribution with time-varying rate

[26,27]

pðx, tÞ ¼ gxlxðtÞ
x!

e�glðtÞ,

with lðtÞ ¼ 1� e�c2t and g ¼ c1=c2. Accordingly, the solution

of the backward equation (2.6) can be expressed as

bðx, tÞ ¼ lxðT � tÞe�lðT�tÞþlðTÞ:

With that, one computes the probability distribution ~pðx, tÞ of

the endpoint conditioned process through (2.5). The same

result is obtained by integrating the smoothing master

equation (2.8), where the posterior propensities for this

example are

~a1ðx, tÞ ¼ c1lðT � tÞ, ~a2ðx, tÞ ¼ c2x
lðT � tÞ : ð2:10Þ

The function lðT � tÞ is a monotone decreasing function in t
and reaches zero at t ¼ T. Hence, in order to reach the state

X(T ) ¼ 0 with probability one, the posterior birth rate con-

verges to zero while the death rate becomes unbounded as

t! T. Some sample paths of the posterior birth–death

process with time-varying rates (2.10) are shown in figure 1.
3. Posterior moment equations
The presented posterior master equations inherit the same

scability problems as the original chemical master equation
due to the combinatorial increase in the cardinality of X
with the number of species d. Traditional approaches that

can approximately capture the stochastic dynamics of the

prior process are the van Kampen expansion [21] and

moment closure techniques [28–30]. Similar techniques can

be applied to the posterior master equations (2.3), (2.8) and

also to the backward equation (2.6). For the latter, a linear

noise approximation was performed in [31]. We follow

the moment closure approach and subsequently derive novel

approximate posterior moment dynamics. Throughout we

will consider propensity functions of the form ajðxÞ ¼ cjgjðxÞ
with cj [ R.0 the stochastic rate constant of the reaction j
and gjðxÞ any polynomial function of bounded degree. Using

a multi-index h ¼ ðh1, . . . ,hdÞ with jhj ; h1 þ � � � þ hd for

h [ Nd [30], we can compactly write ajðxÞ ¼
P
jhj�0 a j,hxh

with the shorthand xh ; xh1

1 � � � x
hd
d . Similar to the moment

expansion for the traditional master equation [30], one can

develop a moment expansion of the filtering master equation

(2.3). Denoting its moment of order h by MhðtÞ the generally

infinite set of moment equations reads

dMhðtÞ
dt

¼
Xr

j¼1

X
jgj�0

a j,g

X
0d,z�h

n
z
j

h

z

� �
Mh�zþgðtÞ, ð3:1Þ

with the reset conditions at the observation time ti � tn follow-

ing the Kallianpur–Striebel formula [19]

MhðtiÞ ¼ C�1
i

X
x[X

pðx,t�i Þxhpðyi j xÞ: ð3:2Þ

In terms of computational complexity, solving the moment

equations together with (3.2) does not show any advantage

compared with directly solving (2.3) because (3.2) still involves

the filtering distribution pðx, tÞ. The main contribution of this

work is to propose an approximate approach to the reset con-

dition (3.2) for the posterior moments.
4. Approximate posterior moments dynamics
In the following, we derive novel approximate posterior

moment dynamics exploiting a special form of the tower

property for conditional expectations

E[sðXðtnÞÞuðynÞ j y1, . . . ,yn�1]

¼ E[E[sðXðtnÞÞ j y1, . . . ,yn�1,yn]uðynÞ j y1, . . . ,yn�1],

for integrable functions s and u. Additionally, we make use of

traditional moment closure techniques. We begin with a uni-

variate system (i.e. d ¼ 1) and assume that observations are

subject to additive noise yi ¼ XðtiÞ þ wi, where wi are i.i.d.

random variables with bounded moments up to order four.

For h � 1, we obtain the following approximation to the

http://rsif.royalsocietypublishing.org/
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reset conditions (3.2) for the posterior filtering moments (elec-

tronic supplementary material, S.6):

MhðtiÞ ¼
Xh
q¼0

qh,qyq
i , ð4:1Þ

where the coefficients qh,q are determined by the linear

equations obtained from the tower property (4.1) (electronic

supplementary material, S.6)

Xh
q¼0

qh,q

Xqþj

b¼0

qþ j
b

� �
Mbðt�i ÞE½w

qþj�b
i �

¼
Xj

b¼0

j
b

� �
Mhþbðt�i ÞE½w

j�b
i �,

ð4:2Þ

with j ¼ 0,1, . . . ,h, which, however, involve moment Mqðt�i Þ
with order q up to 2h. To cope with this problem, one can

employ moment closure techniques and approximate the

higher order moments by functions of lower order moments

up to order h; see, for example, [32–34]. With that, the linear

set of equations can be solved for qh,q and (4.1) can serve as

an approximation to (3.2). We provide explicit expressions for

(4.1) in the case of normal, lognormal and modified normal

moment closure techniques in the electronic supplementary

material, S.6.1–6.3. It is worth noting that the update formula

of the celebrated Kalman filter turns out to be a special case of

our approximation approach for the case of a normal closure

combined with an additive Gaussian measurement model

(electronic supplementary material, S.6.1).

We also provide an alternative approximation to posterior

variance for that case. It is natural to assume that the reset

step, which incorporates the information of a measurement,

leads to a variance SðtiÞ smaller than Sðt�i Þ. That is, at

measurement point ti,

SðtiÞ ¼M2ðtiÞ � ½M1ðtiÞ�2 ¼ mSðt�i Þ, ð4:3Þ

and hence M2ðtiÞ ¼ ½M1ðtiÞ�2 þmSðt�i Þ, where coefficient m can

be obtained by using (4.1) (see electronic supplementary material,

S.6.4). For a multi-variate system, we define the first and

the second filtering moments MðtÞ ¼ E½XðtÞ j y1, . . . ,yn� [ Rd

and M2ðtÞ ¼ E½XðtÞXTðtÞ j y1, . . . ,yn� [ Rd�d, respectively,

together with the filtering covariance SðtÞ ¼M2ðtÞ�
MðtÞMTðtÞ. The corresponding moment dynamics for these

quantities are detailed in the electronic supplementary

material, S.7. The proposed approach can be applied to

other observation models such as a lognormal noise model,

which will subsequently be used in a gene expression model.
5. An Rauch – Tung – Striebel approximation to
the smoothing moments

Based on the proposed moment approximation to the filtering

distribution, one can derive approximations to the moments

of the smoothing distribution leveraging existing results for

the Rauch–Tung–Striebel (RTS) or the modified Bryson–

Frazier (MBF) smoother [35]. Here, we consider the RTS

smoother because the RTS smoother has some desired proper-

ties such as stability and several other smoothers are based

upon it [35,36]. Similarly, a reaction system with d � 1 denotes

the first and the second smoothing moments by ~MðtÞ ¼
E[XðtÞjy1, . . . ,yN][Rd, ~M

2ðtÞ ¼ E[XðtÞXTðtÞjy1, . . . ,yN] [ Rd�d
and the smoothing covariance by ~SðtÞ ¼ ~M
2ðtÞ � ~MðtÞ

~M
TðtÞ [ Rd�d.

Let us consider the first-order reaction networks. The

prior mean M̂ðtÞ of such a system is given by (equation

(S48) with �L ¼ 1 in the electronic supplementary material,

S.5.1)

dM̂ðtÞ
dt

¼ Ĉ1M̂ðtÞ þ b1: ð5:1Þ

For the gene expression model introduced below, one gets

Ĉ1 ¼
�ðc1 þ c2Þ 0 0

c3 �c6 0
0 c4 �c5

0
@

1
A and b1 ¼

c1

0
0

0
@

1
A: ð5:2Þ

Let Cðt, tÞ be the state transition matrix corresponding to Ĉ1,

that is,
d

dt
Cðt, tÞ ¼ �Cðt, tÞĈ1 and Cðt, tÞ j t¼t ¼ I, which

yields Cðt,tÞ ¼ eðt�tÞĈ1 for all t � t. According to (2.5), the

posterior smoothing and filtering moments have to coincide

at the endpoint tN. Consequently, we initialize our approxi-

mation to ~M
hðtÞ by the approximate filtering moments at tN

obtained through (4.1) and (4.2). The resulting RTS smoother

(see electronic supplementary material, S.8) is then given by

the backward equation

~MðtÞ ¼MðtÞ � KsmðtÞ[Mðt�nþ1Þ � ~Mðtnþ1Þ]

and ~SðtÞ ¼ ~SðtÞ � KsmðtÞ[Sðt�nþ1Þ � ~Sðtnþ1Þ]KT
smðtÞ,

with smoother gain KsmðtÞ ¼ SðtÞCTðtnþ1, tÞ[Sðt�nþ1Þ]
�1 and

Ksmðt�nþ1Þ ¼ I.

6. Application to gene expression models
Consider the standard two-state gene expression model con-

sisting of six reactions that involve four different species: G1

and G0 for the active and inactive promoter, respectively, M
for mRNA and P for the expressed protein

G0 O
c1

c2

G1, G1 �c3! G1 þM,

M �c4!Mþ P, P �c5! ;, M �c6! ;:

Through the conservation of active and inactive promoters,

the state of the system can be represented by

X ¼ ðX1 X2 X3ÞT [ N3, where X1, X2 and X3 are the

amounts of G1, M and P, respectively. A key problem in

gene expression is to reconstruct the inaccessible states such

as the mRNA abundance from noisy measurements of the

protein abundance dynamics (e.g. through fluorescent label-

ling). Such state reconstruction is of particular interest for

transient induction of genes, where the time-varying inducer

can be modelled by a time-varying promoter activation rate

c1 ¼ c1(t). Throughout this section, we assume lognormal

measurement noise on the protein dynamics. That is,

yi ¼ ewi X3ðtiÞ ¼ ewi FXðtiÞ,

with E½wi� ¼ 0, E½w2
i � ¼ s2

i and the corresponding observation

matrix F ¼ 0 0 1ð Þ. In the following, we show that for

synthetic data and for real single-cell data from Saccharo-
myces cerevisiae the proposed method allows one to

reconstruct robustly the mRNA abundance and true protein

abundance from such noisy measurement trajectories. Before

the next observation instant ti, the propagation of the

moments is given by the prior moment equations (see, for

example, [37] and also equation (S48) with �L ¼ 2 in the

http://rsif.royalsocietypublishing.org/
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electronic supplementary material, S.5.1)

dMðtÞ
dt

¼ Ĉ1ðtÞMðtÞ þ b1ðtÞ

and
dM2ðtÞ

dt
¼ Ĉ1ðtÞM2ðtÞ þM2ðtÞĈT

1 ðtÞ þ b1ðtÞMTðtÞ

þMðtÞbT
1 ðtÞ þ

X6

j¼1

njn
T
j ajðMðtÞÞ,

where Ĉ1 and b1 are now time dependent due to the time-

varying promoter activation rate c1. At measurement times

ti the following reset conditions are applied:

MðtiÞ ¼ Q1,0 þQ1,1yi

and M2ðtiÞ ¼ M2ðt�i Þ � e1=2s2
i Q1,0MTðt�i ÞFTQT

1,1

� e1=2s2
i Q1,1FMðt�i ÞQ

T
1,0 � e2s2

i Q1,1½FM2ðt�i ÞFT �QT
1,1

þQ1,0yT
i Q

T
1,1 þQ1,1yiQ1,0 þQ1,1yiyT

i Q
T
1,1,

where Q1,0 [ Rd and Q1,1 [ Rd are given by

Q1,0 ¼Mðt�i Þ � e1=2s2
i Q1,1FMðt�i Þ

and Q1,1 ¼ e�1=2s2
i [M2ðt�i Þ �Mðt�i ÞMTðt�i Þ]FT

� {F[es
2
i M2ðt�i Þ �Mðt�i ÞMTðt�i Þ]FT}�1:
6.1. In silico experiments
We first apply our proposed approximate approach to the

gene expression model using simulated non-stationary data

and, for simplicity, assume a constant reaction rate c1.

Based on the obtained filtering moments, we compute the

RTS approximate for the smoothing moments. For reference,

the filtering and the smoothing moments are also computed

exactly by integration of the corresponding conditional
master equation. The comparison between the approximate

moments and the exact ones is given in figure 2, where the

prior moments are also given for comparison. Note that the

measurement noise standard deviation s ¼ 0.2 is larger

than those in the experimental data used in this study,

which were identified as s ¼ 0.15 in the Msn2 case and s ¼

0.125 in the GEV case below, respectively. The approximation

to the filtering moments and to the smoothing moments is in

good agreement with the exact results. Moreover, one can

observe that the actual mRNA and protein dynamics corre-

sponding to the actual measured data points can accurately

be tracked by the respective posterior means. From the

above discussion, it is evident that the traditional prior

dynamics cannot provide this single-trajectory resolution. In

the electronic supplementary material, S.7.3, we apply the

proposed moment approximation to another in silico problem

that exhibits bimodal distributions. It indicates that the pos-

terior distribution of multi-modal systems can often be

unimodal due to the conditioning and can hence be

approximated well by low-order moment equations.
6.2. Gene expression systems in yeast
We apply our proposed state reconstruction approach to two

different inducible gene expression systems in Saccharomyces
cerevisiae. Both systems can be described by the above gene

expression model with a time-varying promoter activation

rate caused by the nuclear translocation of an inducer.

In the first system, a microfluidic device is used to control the

nuclear–cytoplasmic translocation dynamics of the transcription

factor Msn2 by modulating the levels of the small molecule

1-NM-PP1 to control the expression of a fluorescent reporter

protein (see [6] for a detailed description; subsequently referred

to as the Msn2 system). The second system is an artificial gene

expression system centred around the chimeric transcription
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factor GAL4DBD.ER.VP16 (GEV). The GEV translocation is

again modulated using a microfluidic device controlling the

supply of the hormone b-oestradiol. The nuclear transcription

factor GEV activates the transcription of genes under a GAL1

promoter, where we placed a fluorescent reporter protein as a

readout (see [7] for a detailed description; subsequently referred

to as the GEV system). In both model systems, fluorescent time-

lapse microscopy is used to monitor the nuclear–cytoplasmic

translocation of the respective transcription factor fused to a flu-

orescent protein, as well as the expression of a fluorescent protein

induced by the respective transcription factor in individual cells.

The two case studies are successively complicated. In the

Msn2 case, we associate for every single-cell trace a separate

parameter set. This is feasible due to a sufficient number of

observations for each trace. The problem thus corresponds

to the in silico study from above and no extrinsic noise

model is assumed that couples parameter sets from different

traces. In most scenarios, however, one needs to pool together

heterogeneous traces in order to achieve sufficient estimation

accuracy. To illustrate this complication we show, for the

GEV case, how an extrinsic noise model can be incorporated

into the proposed filtering or smoothing method. The exten-

sion is in line with the observation that the GEV expression

variability shows a large extrinsic component [7].
6.3. Approximate state reconstruction for Msn2 system
To demonstrate the effectiveness of the proposed method, we

reconstruct the mRNA dynamics based on the noisy fluor-

escent readout of the protein level. For the first case, we

used single-cell traces from [6] to estimate the parameters of

the kinetic expression model and the measurement noise

model using the algorithm given in [7]. The temporal profile

of the promoter activation rate is estimated from the nuclear

concentration of the transcription factor (see also [6,7] for
details). We remark that this induction happens quite rapidly

(figure 3). Generally, it is challenging to perform state

estimation for such fast varying systems.

Figure 3 shows the reconstruction results for two exemplary

single-cell traces of the dataset in [6]. Applying finite-state-

projection techniques [38,39], we were also able to compute

the exact moments from solving posterior master equations

(2.3) and (2.8) as a reference. However, for larger systems,

solving the corresponding master equation quickly becomes

computationally infeasible—motivating our approximate

approach. Figure 3 indicates that the proposed approximation

to the filtering moments works well. As it only involves solving

a set of ordinary differential equations with reset conditions the

approach is scalable to large reaction systems.

Similarly, we applied the proposed smoothing algorithm

to the single-cell trajectories. In particular, we used the pre-

sented RTS approximation to the smoothing moments.

However, it is observed that the traditional RTS approxi-

mation does not always work for the considered

experimental data. Figure 4 shows that the approximation

works well for trajectory B while it fails for trajectory A

where one can observe a collapse of the smoothing covari-

ance for the approximate method even though the involved

approximate filtering moments are accurate (cf. figure 3).

This indicates that novel approximate methods for the

smoothing moments are needed to overcome the limitations

of traditional RTS schemes.

6.4. State reconstruction in the presence of extrinsic
noise

Apart from the inherent randomness of biomolecular reactions,

gene expression was shown to exhibit a substantial degree of

extrinsic noise [5,40–42], stemming from various factors in a

cell’s microenvironment. The considered GEV system showed
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significant extrinsic noise [7] and we therefore minimally extend

the standard gene expression system by a random protein trans-

lation rate c4 assumed to be a gamma distribution characterized

by shape and rate parameters a and b. In contrast with the Msn2

case study, where we assumed the model parameters to be

given, we aim to estimate states and parameters—for the latter

in particular the population heterogeneity captured by (a, b).

Treating a parameter as just another state that also follows a

certain prior distribution, we aim to quantify the gain in cer-

tainty about states as observations are acquired. More

specifically, before receiving any data we assume a prior hetero-

geneity characterized by values �a and �b. Hence, the prior

moments of an average cell in the population compute to

M̂hðtÞ ¼ E[E[XhðtÞ j c4]], where the outer expectation is over

c4 �Gð�a, �bÞ. In order to compute these prior moments, we

employ the marginal moments of [3], which treats the unknown

reaction rate c4 as a dummy species by rewriting the translation

reaction as Mþ c4 ! Mþ c4 þ P with unit rate. The resulting

prior moments for the model of the GEV system are given in

figure 5.

After receiving the data, the prior heterogeneity can be

turned into a posterior by conditioning on all L recorded

time traces. To obtain such a posterior over a and b, we

employ Markov chain Monte Carlo techniques to sample

pða, b j y1
1:N , . . . ,yL

1:NÞ/
YL

m¼1

pðym
1:N j a, bÞpða, bÞ,

with ym
1:N ¼ fym

1 , . . . ,ym
Ng the measured trace corresponding to

cell m, measured at N time points. The mean value of this dis-

tribution serves as a Bayesian point estimate ð~a, ~bÞ that we can

then use to determine the posterior moments. When receiv-

ing a new single-cell trajectory yLþ1
1:N one can now ask for

its most likely mRNA and protein dynamics given this

posterior heterogeneity. That is, we aim to compute
~M
hðtÞ ¼ E[E[XhðtÞ j c4, yLþ1

1:N ]], where the outer expectation is

over c4�Gð~a, ~bÞ. To approximate these posterior moments,

we combine our proposed smoothing approach with [3] to

obtain a posterior marginal moment equation. Thereby, we

follow again the RTS ansatz and use the exact moments

obtained from integrating the smoothing master equation

(2.8) as a reference. Conceptually, the resulting marginal

moments are equivalent to averaging the traditional smooth-

ing moments for random c4 drawn from the gamma

distribution. The results for one exemplary single-cell trajec-

tory are given in figure 5. It is observed that the RTS

approximation to the smoothing moments is accurate for

the considered data of the GEV system. Also evident from

the comparison in figure 5 is the significant reduction of var-

iance of the posterior moments with respect to the prior

moment dynamics.
7. Conclusion
Our capacity to decipher the inner workings of a cellular pro-

cess strongly depends on the dimensionality of the available

molecular readout. For time-resolved single-cell analysis the

number of simultaneous readouts remains limited and biol-

ogists are trained to qualitatively infer the behaviour of

unobservable states of the process. However, with the rise

of the computational models that can quantitatively capture

the behaviour processes, one can now improve on this quali-

tative inference. We remark, again, that estimating the most

likely latent state of the process for a given observation is

different from just computing the solution to a calibrated

model. The theory of optimal filtering offers the general sol-

ution to the problem on how to combine data with a

dynamic model to predict such states. However, it is

known that solving the exact filtering or smoothing problem
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is computationally costly and we show that for a biochemical

network it is at least as costly as integrating the chemical

master equation.

To this end, we develop an approximate but scalable

approach to filtering by exploring the fundamental relation-

ship [43] and combining it with traditional moment closure

techniques. We verify the effectiveness of the proposed

method through single-cell experimental data and through

in silico experiments. Based on the approximation to the filter-

ing moments obtained by the method, one can further

compute the RTS approximation to the smoothing moment.

Although the RTS approximation often works well (see

figures 4c,d and 5), it also show significant deviations (e.g.

figure 4), even when the proposed approximation to the filter-

ing moments performs well (figure 3). This lack of robustness

indicates that a novel approximation to the smoothing

moments needs to be developed for the case of stochastic

reaction networks with lognormal measurement noise.

We observe that the imposed conditioning often yields

posterior processes with confined, unimodal distributions

even if the corresponding prior process exhibits multi-modal

distributions. Hence, approximations through moment

closure or state-space truncation of posterior processes for

complex systems such as multi-stable or oscillatory networks

[44] appears feasible and is a promising research question.

Moreover, the proposed method can be extended to a

hybrid framework (e.g. [45–47]) where a diffusion approxi-

mation can be performed for some states and reactions. This

is especially interesting for multi-scale cellular processes, for

instance in signal transduction coupled to gene expression

where different abundance scales of molecules are involved.

The proposed state reconstruction approach can profit from

such a hybridization and would lead to even more scalable

algorithms. Because it is well known that the moment closure

techniques can also fail [33,48], theoretical analysis, such as
the computation of error bounds, for the special case of

posterior moments is a promising future research topic. The

developed moment approximations of the filtering distri-

bution can also be used for the stochastic decoupling of

networks as proposed in [49].
8. Methods and experimental protocols
8.1. Mathematical methods and algorithms
Details on mathematical derivations of the posterior master

equations, the posterior moment equations and details on

the discussed case studies together with more corresponding

simulation results are given in the electronic supplementary

material. The MATLAB codes used to generate all results in

this paper are available at http://www.bcs.tu-darmstadt.de/

media/bcs/Reconstructing_dynamic_molecular_states.zip.

8.2. Calibrating YFP fluorescence to absolute numbers
of molecules

The previous work [6] quantified induction of Msn2 target

genes as the mean fluorescence intensity per pixel in arbitrary

units (arb. units) through a fast-maturing YFP reporter protein,

mCitrineV163A. However, in order to apply the state recon-

struction approach, it is necessary to calibrate these

measurements to obtain absolute numbers of YFP molecules

per cell. A calibration relationship was developed by measur-

ing the mCitrineV163A fluorescence of five yeast proteins of

known abundance [50] using the same exposure conditions

as in the original study [6]. The five yeast genes were:

YGP117C (1280 molecules per cell), TMA108 (5110 molecules

per cell), HOG1 (6780 molecules per cell), TDA1 (10 200 mol-

ecules per cell) and CAR1 (42 800 molecules per cell). Each

gene was C-terminally tagged with mCitrineV163A (in a

http://www.bcs.tu-darmstadt.de/media/bcs/Reconstructing_dynamic_molecular_states.zip
http://www.bcs.tu-darmstadt.de/media/bcs/Reconstructing_dynamic_molecular_states.zip
http://www.bcs.tu-darmstadt.de/media/bcs/Reconstructing_dynamic_molecular_states.zip
http://rsif.royalsocietypublishing.org/
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pKT-vector; available from AddGene as no. 64685) followed

by a HIS-marker by transforming a polymerase chain reac-

tion-generated mCitrineV163A-HIS construct into the

original haploid S288C Saccharomyces cerevisiae strain used by

Ghaemmaghami et al. [51] (EY0986, MAT a, ATCC201388,

his31, leu20, met150, ura30, S288C) and selecting on SD-HIS

plates. To minimize experimental variability, we picked and

measured four independent clones for each of the five genes.

We used the untagged wild-type strain EY0986 to determine

the autofluorescence background. To measure fluorescence

intensity from each clone, we closely followed the protocol

described by Ghaemmaghami et al. Briefly, we picked a

single colony to inoculate a flask containing yeast extract pep-

tone dextrose medium. Cells were grown overnight until an

OD600 of approximately 0.7. Cells were fixed by incubating

0.9 ml of culture with 0.1 ml 10% buffered formalin solution

(Sigma-Aldrich HT5011) for 5 min with occasional mixing.

Cells were spun down and washed with 0.1 M KH2PO4 pH

8.5 and then 1.2 M sorbitol in KH2PO4 pH 8.5. Cells were re-

suspended in 20 ml 1.2 M sorbitol in KH2PO4 pH 8.5. Then

2 ml of this solution was loaded onto a microscope slide, a cov-

erslip added and sealed with nail polish. Cells were then

immediately imaged using the exact same exposure conditions

as described in [6]. Images were then analysed and fluor-

escence quantified as previously described [6,51]. After

quantifying the fluorescence intensity per cell for each of the

five genes, we then fitted a simple line to the data and found

that each YFP molecule contributed about 100.8 arb. units flu-

orescence per cell under our excitation settings [51]. We

therefore divided the total fluorescence per cell from the pre-

vious dataset [6] to obtain the total number of YFP

molecules per cell.

8.3. Fluorescence microscopy and image analysis in
pGAL1 Y-Venus expression

The experiments were performed on the same epifluores-

cence microscope (Eclipse Ti, Nikon Instruments), 60�
(NA1.4) oil objective and specific (CFP/YFP/mCherry)
excitation and emission filters located in an incubation

chamber set to maintain 308C. Imaging conditions and par-

ameters were kept constant for all experiments. Single

colonies of the respective yeast strain were picked, inoculated

in synthetic (SD) medium and grown overnight at 308C. The

saturated cultures were then diluted and grown in log phase

for at least two doubling times (more than 4 h). Before they

were loaded into the imaging chambers, the cell suspensions

were diluted again (OD600 ¼ 0.01) and briefly sonicated.

Single-cell traces were recorded by fluorescence microscopy

with a 30 min induction pulse of 25, 50 and 100 nM b-oestra-

diol. The pulses were done by switching between two

hydrostatic pressure (1 p.s.i.) driven flows (SD-full and SD-

full þ b-oestradiol) using a three-way solenoid valve (The

Lee Company) connected to the cell chamber (m-Slide VI;

Ibidi). All microscopy images were analysed with the Yeast-

Quant platform. The GEV relocation and Venus expression

time-lapse movies were segmented on the basis of the nuclear

CFP image from the HTA2-CFP marker. The expression of

the Y-Venus protein was quantified as the total intensity in

the cell. The expression levels of the YFP-tagged proteins

were measured with illumination conditions similar to

those used for the Y-Venus imaging. See [7] for a detailed

description.
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